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Outline:

-Magnetic nanostructures: opportunities & challenges

-Ab initio modeling of magnetic systems

- FeMn and FeMn|Co heterostructures

- Future plans
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 Nanoscale is dominated by interface

Example: FePt (L10) Nanoparticle
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Surface Spin Disorder in Nanoparticles

Competition  between surface
anisotropy and exchange

Maybe even random exchange

Ferro- (Ferri-) magnetic interior
couples to spin-glass
(antiferromagnetic) surface
region

Enhancement of “effective” anisotropy
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Nanoparticles / Nanostructures
Nano-particles/gains = “single domain”

6 nm particle ~40% of atoms in surface region

Competition between chemical phases

- Multiple magnetic phases

- Surface segregation

Demonstrated with Kodama’s work on NiFe2O4:

magnetic structure probably complex!

Interfaces between “materials” or magnetic phases

- Ferro/antiferro; ferro/sin-glass; …

- Exchange bias was discovered in Co nanopaticles!

Because of large surface to volume ratio

all interesting effects occur in one particle

Interest / opportunities in magnetic systems is due to

there complexity

- Long range interaction; non-linearity of LLG; …

Complex spin structure in

nanostructures could be an opportunity
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Atomic scale spin-structure

Nanomagnetism, opportunities & challenges

- need to understand atomic scale spin structure

Experimental probes

-Most average over 10-100 or more nanometers

-Atomic scale spin-structure accessible by inference

using models

Models of magnetism at the nano scale

-Surface / interface region is like new material

-Parameters (exchange, anisotropy, etc.) unknown

Complement experiment with first principle

electronic structure calculations
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Ab initio modeling of magnetism
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Self Consistent Field Equations

LSDA : exchange/correlation

Magnetic moments:

-Fe: ~2.3 µB exp. 2.2 µB

-Co: ~1.6 µB exp. 1.7 µB

-works for many other materials (Ni, Cr, etc.)

Anisotropy: similar success

Curie temperatures:

-Mean Field with Onsager Cavity Fields

Fe Ni

Tc (K) 1015 450

Expt. 1040 631

mDLM (µB) 1.89 0.0

Gyorffy ,et al. J. Phys. F15, 1337 (1985); ib id 1761

Staunton & Gyorffy ,PRL 69, 371 (1992)
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Constrained Local Moment Method

Local moment: (even in itinerant transition metals)

Time evolution of magnetic structure

-Classical dynamics but ab initio free energy functional
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Locally Self-Consistent Method

Moment / charge of atom i

-Schrödinger eq. in cluster

-Poisson eq. in solid

Algorithm maps perfectly

onto massively parallel

computers

FeMn runs on IBM SP3   at

NERSC

Calculations with ~104

atoms are possible

-5nm3 has ~ 12,000 atoms
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Magnetism in  FeMn & FeMn/Py

Experimental Summary
- Inelastic Neutron Scattering: FeMn is antiferromagnetically

ordered in 1Q, 2Q, and 3Q (Umebayashi and Ishikawa (1966))

- Mossbauer spectroscopy suggests 3Q or 2Q (Kennedy and
Hicks (1987))

- But near neighbor Heisenberg model cannot distinguish
between these three structures

Perpendicular coupling between FeMn and Permalloy
observed (Jungblut et. al. 1995)
- understood in Heisenberg model

(Hinchey & Mills 1986, Koon 1997)
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Ab initio calculations for bulk FeMn

In a nutshell: 1Q is unstable, 2Q &3Q are stable

Moment direction varies only a few degrees

Mean Field (CPA)Mean Field (CPA)

KKR-CPA KKR-CPA 1 Q       2Q       3Q
µMn              1.88     2.00    2.05

µFe                         1.72     1.85    1.91

EB(meV)       15.86   5.27     0.0

Real Space (super cell)Real Space (super cell)

LSMS        LSMS        1 Q      2Q      3Q    3Q_R

µMn              2.09     2.14    2.17    2.21

µFe                         1.61     1.75    1.79    1.77

EB(meV)       15.0     4.14     0.0     -2.5

3Q 3Q-Relaxed
Comparison
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FeMn | Co Multilayers
 Initial state: Ferro for Co,  3Q for FeMn

Final State

Co   Remains ferromagnetic

FeMn    3Q structure destroyed

Model of FeMn/Co interface

- 15 layers FeMn, random alloy AFM, 3Q

- 6 layers Co – 3-frozen FM

- Base 2D cell 12x8

- 2016-atom calculation

Co

FeMn 
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Rearranged spin structure due to

proximity of FeMn to Co

Proximity to Co:
- spin structure in FeMn changes from 3Q to 1Q

- FeMn moments are approximately collinear

FeMn moments are perpendicular to Co
-Similar to spin-flop coupling in Heisenberg model
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In the next 3-5 years supercomputers will be 100-1000 times faster

- Is it really reasonable to scale ab initio computation to 106 atoms?

Nanomagnets require:

- Ab initio calculations

- Fluctuations at T>0 - entropy effects

Need to calculate free energy

Run multiple ab initio calculations in parallel to sample W

- Probably doable for 100 times faster machine (ongoing project on IBM BG/L)

Examples:

- Temperature dependent effective anisotropy, magnetization, etc. in nanoparticles

- Effective anisotropy for AFM/FM gains (Exchange Bias)

Looking into the Future
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National Leadership Computing Facility

Sustainable path
for Leadership
Class computers X2

2006 20082004

6 TF 20 TF/20 TF 100 TF50TF

BG/L

100 TF

Sustained
X1 X1e RS X2

BG/L
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Materials Science 

Virtual User Center

 Open Source Repository

 Object Oriented Tool Kit

 User Laboratories

 User training

 Materials : Math : Computer

Scientists
Cray X1

Computational End-Station for Nanomagnetism?

Instrumentation for Nanoscience
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Summary and Conclusions

Reliable ab initio computation for nano-
structures complement experimental probes
- Surface regions dominate nanostructures

- Understand spin structure at the atomic scale

- Materials specific studies

Applying ab initio computation to
nanostructure is possible
- LSDA to DFT reliable for magnetic materials

- Application to ~104 atom currently possible

Future possibilities 
(3-5 years with 100-1000 x faster computers)
- Dynamics and finite temperature phenomena can

be studied at atomic scale
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